A Localization Solution for an Autonomous Vehicle in an Urban Environment
نویسنده
چکیده
Localization is an essential part of any autonomous vehicle. In a simple setting, the localization problem is almost trivial, and can be solved sufficiently using simple dead reckoning or an off-the-shelf GPS with differential corrections. However, as the surroundings become more complex, so does the localization problem. The urban environment is a prime example of a situation in which a vehicle’s surroundings complicate the problem of position estimation. The urban setting is marked by tall structures, overpasses, and tunnels. Each of these can corrupt GPS satellite signals, or completely obscure them, making it impossible to rely on GPS alone. Dead reckoning is still a useful tool in this environment, but as is always the case, measurement and modeling errors inherent in dead reckoning systems will cause the position solution to drift as the vehicle travels eventually leading to a solution that is completely diverged from the true position of the vehicle. The most widely implemented method of combining the absolute and relative position measurements provided by GPS and dead reckoning sensors is the Extended Kalman Filter (EKF). The implementation discussed in this paper uses two Kalman Filters to track two completely separate position solutions. It uses GPS/INS and odometry to track the Absolute Position of the vehicle in the Global frame, and simultaneously uses odometry alone to compute the vehicle’s position in an arbitrary Local frame. The vehicle is then able to use the Absolute position estimate to navigate on the global scale, i.e. navigate toward globally referenced checkpoints, and use the Relative position estimate to make local navigation decisions, i.e. navigating around obstacles and following lanes. This localization solution was used on team VictorTango’s 2007 DARPA Urban Challenge entry, Odin. Odin successfully completed the Urban Challenge and placed third overall.
منابع مشابه
Improving the Reliability of GPS and GLONASS Navigation Solution in Urban Canyons using a Tuned Kalman Filter
Abstract: Urban canyon is categorized as hard environment for positioning of a dynamic vehicle due to low number and also bad configuration of in-view satellites. In this paper, a tuning procedure is proposed to adjust the important factors in Kalman Filter (KF) using Genetic Algorithm (GA). The authors tested the algorithm on a dynamic vehicle in an urban canyon with hard condition and compare...
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملLane detection & localization for UGV in urban environment
Generally, the main components of autonomous driving system consists of perception (geometry recognition, localization, and objects detection & tracking) and navigation processes (global & local path planning, and controller). In this paper, we focus on finding an accurate position for Unmanned Ground Vehicle (UGV) in urban environments. A GPS sensor is fundamentally used to get a current globa...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملTo the Bookstore! Autonomous Wheelchair Navigation in an Urban Environment
In this paper, we demonstrate reliable navigation of a smart wheelchair system (SWS) in an urban environment. Urban environments present unique challenges for service robots. They require localization accuracy at the sidewalk level, but compromise GPS position estimates through significant multi-path effects. However, they are also rich in landmarks that can be leveraged by feature-based locali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008